

RAPTOR Engine manual

Page 1 of 126

RAPTOR Engine

User Manual

© 2014 Reboot

http://reboot.atari.org

RAPTOR Engine manual

Page 2 of 126

Introduction 4
 Licensing 4
 Features 5
Disclaimer 6
Before you start 6
 Building the examples 6
 Credits 7
 Greetings and thanks 7
RAPTOR Functions, Equates and Variables 8
 RAPTOR Application Files 8
RAPTOR Function Calls 9
 RAPTOR_HWinit 10
 RAPTOR_start_video 13
 RAPTOR_setlist 14
 RAPTOR_particle_init 15
 RAPTOR_particle_clear 16
 RAPTOR_print 17
 Print Commands 18
 RAPTOR_move_palette 19
 RAPTOR_GFXConvert 20
 RAPTOR_UPDATE_ALL 21
 RAPTOR_wait_frame 22
 RAPTOR_wait_frame_UPDATE_ALL 23
 RAPTOR_UPDATE_SPRITES 24
 RAPTOR_UPDATE_PARTICLES 25
 RAPTOR_U235init 26
 RAPTOR_call_GPU_code 27
 RAPTOR_call_GPU_code_STOP 28
 RAPTOR_call_GPU_code_nowait 29
 RAPTOR_GPU_COLLISION 30
 RAPTOR_HEXtoDEC 31
 RAPTOR_particle_injection_GPU 32
 Particle Effect Structure 33
 RAPTOR_U235setmodule 34
 RAPTOR_U235gomodule_stereo 35
 RAPTOR_U235gomodule_mono 36
 RAPTOR_U235playsample 37
 RAPTOR_U235stopDSP 38
 RAPTOR_U235stopmodule 39
 RAPTOR_chk_highscores 40
 RAPTOR_resort_score_table 41
 RAPTOR_mt_save 42
 RAPTOR_mt_load 43
 RAPTOR_init_map_objs 44
 RAPTOR_map_set_position 45
 RAPTOR_d_lz77 46

RAPTOR Engine manual

Page 3 of 126

 RAPTOR_ERROR 47
 RAPTOR_Version 48
Non-RAPTOR Objects 49
 RAPTOR_PRE_Object_List & RAPTOR_POST_Object_List 50
 RAPTOR_CreateObject 51
 RAPTOR_rmw 52
 RAPTOR_setpalt 53
 RAPTOR_reflect 54
 RAPTOR_setup_object_xyg 55
 RAPTOR_setup_object_xg 56
 RAPTOR_setup_object_g 57
 RAPTOR_setup_object_xy 58
 RAPTOR_setup_object_zyg 59
RAPTOR_user_vbi (System Hook) 60
RAPTOR Initialization File (_RAPINIT.S) 61
 RAPTOR List Data 62
 Multiple Bounding Box List 64
RAPTOR Examples 65
 EX-01a Hello World 66
 EX-01b Text Commands 70
 EX-02a List Objects (Backdrop) 72
 EX-02b List Objects (Player) 78
 EX-02c List Objects (Player Animation) 81
 EX-02d List Objects (Enemies) 83
 EX-03a Movement (Automovement) 87
 EX-03b Movement (Code Controlled) 89
 EX-03c Movement (Jagpad Controlled) 91
 EX-04a Object Spawning 93
 EX-04b Object Collisions 96
 EX-04c Indentifying Collisions 99
 EX-05 Particle Effects 101
 EX-06a Audio (Music) 104
 EX-06b Audio (Sound Effects) 106
 EX-07 Multiple Lists 108
 EX-08 Interlude (Some Game Stuff) 111
 EX-09a High Scores 112
 EX-09b MemoryTrack 114
 EX-10 Tile Maps 116
RAPTOR Example Games 122
Changes and Updates 126

RAPTOR Engine manual

Page 4 of 126

Introduction

The RAPTOR Engine™ is a software package intended for use by developers on the Atari Jaguar 64bit
Multimedia System. It provides a HAL (Hardware Abstraction Layer) to allow you to concentrate on
your game rather than how the Jaguar hardware functions. Technology has been built into the
RAPTOR Engine™ to simplify its use, whilst providing flexibility and minimizing main system bus
access.

Licensing

Definitions

• “The Software” refers to the RAPTOR Engine, which is provided as an assembled binary object
for use on the Atari jaguar 64bit Multimedia System.

• “U235SE” refers to the U235 Sound Engine by U235 (http://www.u-235.co.uk/developer/sound-
engine/).

• “Author(s)” refers to the group REBOOT (http://reboot.atari.org).

Licence

This software is provided free of charge to anyone and everyone. REBOOT accepts no responsibility for
damage or loss by its use or misuse. REBOOT grants you the right to use this software within your own
works provided that:

• Clear identification of the use of this software is included within your own works, either by use
of the approved logo provided, or textually.

• The identification of the use of this software must appear within the digital works in a manner
that is visible to the end user and upon any physical packaging.

• The software may not be reverse engineered or modified without prior consent of the
author(s).

• No source code forming any part of The Software is to be distributed without explicit
permission from the author(s).

U235 Sound Engine

The RAPTOR Engine makes use of the U235 Sound Engine to provide audio functions. Use and
inclusion of this library must also recognise and abide by the licence provided by U235 for their Sound
Engine.

RAPTOR Engine manual

Page 5 of 126

Features

• Entirely GPU based RISC core

• Kudos Ware Licensing model

• Text functions

• Up to 512 independent, fully programmable Objects with 16.16 sub-pixel positioning

• Animation Engine complete with scaling and mirroring functions

• Full control over Objects using a HAL

• Human Readable object composition lists

• Dynamic Branching Object Support

• Dynamic Object Culling

• CLUT/RGB/CRY support

• Collision handling

• Particle functions

• MemoryTrack and High Score management

• Tile Map Engine (with 16.16 sub-pixel accuracy)

• Full U235 Sound Engine integration

Disclaimer

RAPTOR Engine manual

Page 6 of 126

Throughout this document you will find links to external websites. Although we make every effort to
ensure these links are accurate, up to date and relevant, Reboot cannot take responsibility for pages
maintained by external providers.

Before you start

Virtual Jaguar is an Atari Jaguar Emulator. The latest stable release can be obtained from
https://icculus.org/virtualjaguar/ - however up to the minute releases are also available from:
http://outrage.the-crow.co.uk/builds/

RMAC and RLN are the assembler and linker used to build the RAPTOR examples. The latest versions
can be obtained from http://outrage.the-crow.co.uk/builds/

The latest versions of the above three binaries (as of the time of release) are included in the RAPTOR
package with kind permission of their Author(s)

These files should be placed in the EXAMPLES\BIN folder.

Building the Examples

To help illustrate the operation and use of the RAPTOR Engine several demonstration programs are
included. These examples will guide the user from first steps with a “Hello World” example through to
a complete game using most of the RAPTOR functions. These examples will be documented at the end
of this manual.

Inside each of the example folders is a BUILD.BAT. Running this batch file will build the example, link
it to the RAPTOR and U235 SoundEngine objects and then execute them using VirtualJaguar (Providing
it has been set up as detailed above)

Credits

RAPTOR Engine manual

Page 7 of 126

Code and Documentation: Cyrano Jones

Testing: Matmook

Additional Testing: Shamus, ggn, Zerosquare, SCPCD, Linkovitch

Logo and Artwork: sh3-rg

Greetings and Thanks

In no special order:

U-235

Without the Sound Engine and permission to bundle with RAPTOR Engine this would
be a very silent endeavour.

Reboot

ggn, sh3-rg, RemoWilliams – for sticking with me through thick and thin.

Jagware

Special thanks to SCPCD, ZeroSquare for the development and debugging assistance,
to Matmook for developing this further (I hope to include RMOTION in a future
update) and to GT-Turbo for his enthusiasm.

Shamus and the VirtualJaguar team

For fantastic a fantastic emulator that just keeps on giving. Here’s to continuing to
provide bug reports and getting fixes in the future!

Sinister Developments

For the Object Creation routines.

RAPTOR Engine manual

Page 8 of 126

RAPTOR Functions, Equates and Variables

All RAPTOR functions, equates and variables are listed in the RAPTOR.INC file, which
should be included in all your RAPTOR applications.

The EQUATES contain human readable values designed to make writing (and later,
reading) your source code easier.

All RAPTOR functions start with RAPTOR_ these will be detailed on the following
pages.

All RAPTOR variables start with raptor_ so that they can be distinguished from
functions.

The .INC file can be found in RAPTOR\INCS.

RAPTOR Application Files

RAPTOR applications consist of the following files:

_RAPAPP.S Your code will go into this file

_RAPINIT.S Script file defining the composition of all display objects and lists

_RAPPIXL.S Script file defining particle effect parameters

_RAPU235.S Script file defining U235 Sound Effects

RAPTOR.O The RAPTOR Library Object File

DSP.O The U235 Sound Engine Object File

EXTERNAL
FILES

External data files, eg, music Module, Audio files, Graphics

These files will be explored in the Examples section found later on in the manual.

RAPTOR Engine manual

Page 9 of 126

RAPTOR Functions Calls

This section will describe all the function calls, along with their expected input
parameters and their outputs. Example code will be provided in the Examples section
found later on in the manual.

RAPTOR Engine manual

Page 10 of 126

RAPTOR_HWinit (EX-01a)

This function is called at the start of every RAPTOR application. It will configure the
system to the specified video mode, install the RAPTOR Core to the GPU local
memory, create the initial database of objects from the _RAPINIT.S file, initialize and
clear the Particle system and return the system in a usable state, ready for applications
to run.

Expected Inputs:

raptor_vidmode Video mode – CRY16, RGB16, RGB24, DIRECT16

raptor_videnable Video Enable Mask

raptor_varmod VARMOD On or Off

raptor_partbuf_x Width of Particle & Text window in pixels

raptor_partbuf_y Height of Particle& Text window in pixels

raptor_top_of_bss Start of the BSS section in the binary

raptor_trashram Start of work RAM (end of the BSS section)

raptor_MTwork 16k workspace for the MemoryTrack module

raptor_uvbi_jump Address of the user VBI hook

raptor_poobjl Address of the Pre Object List hook

raptor_probjl Address of the Post Object List hook

raptor_8x8_addr Address of the 8x8 font data

raptor_8x16_addr Address of the 8x16 font data

RAPTOR Engine manual

Page 11 of 126

raptor_16x16_addr Address of the 16x16 font data

raptor_partipal Address of the BMP file containing the font/particle
palette data

raptor_pgfx Address of the Particle & Text window bitmap

raptor_pgfxe End address of the Particle & Text window bitmap

raptor_spritetab Address of the RAPTOR Object data table

raptor_mtapp Pointer to the MemoryTrack Application Name

raptor_mtfn Pointer to the MemoryTrack File Name

raptor_inittab Pointer to the data in the _RAPINIT.S file

raptor_samplebank_ptr Pointer to the data in the _RAPU235.S file

RAPTOR Engine manual

Page 12 of 126

If using the Tile Map functions, the following inputs are also expected:

raptor_maptop_obj RAPTOR Object index for the first object in the map

raptor_tiles_x Width in pixels of a single map tile

raptor_tiles_y Height in pixels of s single map tile

raptor_tilesperx Number of horizontal tiles to draw on screen

raptor_tilespery Number of vertical tiles to draw on screen

raptor_mapwidth Width (in tiles) of the map data

raptor_mapheight Height (in tiles) of the map data

raptor_tilerem_mask Mask for calculating position (tile width -1)

raptor_mapbmptiles Pointer to the tile bitmap data

If using the Particle functions, the following inputs are also expected:

raptor_maxparts Maximum number of particles to process

raptor_pdriftx Drift (horizontal) to add to all particles every update

raptor_pdrifty Drift (vertical) to add to all particles every update

raptor_partitab Pointer to particle database

Outputs:

None

RAPTOR Engine manual

Page 13 of 126

RAPTOR_start_video (EX-01a)

This function starts video generation. Before this function is called the screen will
remain blank.

Expected Inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 14 of 126

RAPTOR_setlist (EX-01a / EX-07a)

This function selects a RAPTOR list to be displayed. The lists are defined in the
_RAPINIT.S file and will be described later in the manual.

Expected inputs:

D0 List number to display

Outputs:

None

RAPTOR Engine manual

Page 15 of 126

RAPTOR_particle_init

This function initializes the Particle Engine, which is also used for Text Output. It will
configure the Particle Table database and clear the bitmap used for rendering particles
and text. The particle and text bitmap will always use CLUT 15 (colours 240-256) in
the 256 colour palette.

Its colour palette is defined in the Windows BMP file partipal.bmp, and the font data is
defined in the three font files in the FONTS folder, F_8x8.BMP, F_8x16.BMP and
F_16x16.BMP.

Different fonts for each size can be stacked vertically below each other in the bitmap
files, as can be seen if they are opened in a picture viewer.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 16 of 126

RAPTOR_particle_clear

This function will clear the particle and text layer bitmap.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 17 of 126

RAPTOR_print (EX-01a)

This function allows text to be sent to the display window. Text can be one of three
font sizes, and can use any number of fonts as defined in the font Windows BMP files.

Expected inputs:

A0 Pointer to the text string

D0 X position to print (Note: will be rounded to an even
value)

D1 Y position to print

D2 Font size (0=8x8, 1=8x16, 2=16x16)

D3 Font index (0=1st font in BMP, 1=2nd, etc.)

Outputs:

None

RAPTOR Engine manual

Page 18 of 126

Print Commands

The print string can contain additional commands beyond character graphics to
manipulate the output string.

raptor_t_quit Used to terminate the string

raptor_t_lf Used to issue a line feed

raptor_t_font_idx Used to change the font index

raptor_t_font_siz Used to change the font size

raptor_t_pos_xy Used to re-position the print position

raptor_t_home Used to home the cursor to the top left

raptor_t_right Used to subspace offset the text

RAPTOR Engine manual

Page 19 of 126

RAPTOR_move_palette (EX-02b)

This function will move the palette from the last converted image to the specified
location.

Expected inputs:

A1 Address to copy palette data to

Outputs:

None

RAPTOR Engine manual

Page 20 of 126

RAPTOR_GFXConvert (EX-02a)

This function will convert the specified image (Windows BMP 4/8/16/24 bpp or TGA
16/24 bpp) to Jaguar Bitmap format.

Expected inputs:

A0 Pointer to image to convert

A1 Workspace RAM to use for conversion

Outputs:

None

RAPTOR Engine manual

Page 21 of 126

RAPTOR_UPDATE_ALL (EX-02c)

This function will update all the RAPTOR and Particle objects with any changes made
to their database fields.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 22 of 126

RAPTOR_wait_frame

This function will halt the running application and wait until the vertical sync.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 23 of 126

RAPTOR_wait_frame_UPDATE_ALL

This function will halt the running application and wait until the vertical sync, and
then update all RAPTOR and Particle objects.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 24 of 126

RAPTOR_UPDATE_SPRITES

This function will force an update of all RAPTOR objects.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 25 of 126

RAPTOR_UPDATE_PARTICLES

This function will force an update of all Particle objects.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 26 of 126

RAPTOR_U235init (EX-03b)

This function will install and start the U235 Sound Engine, which is a required module
for both Audio generation and Jagpad reading.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 27 of 126

RAPTOR_call_GPU_code (EX-04b)

This function will set the GPU PC to the specified address and start it running.
Execution on the 68000 will not continue until the GPU halts.

Expected inputs:

A0 Address to set the GPU PC

Outputs:

None

RAPTOR Engine manual

Page 28 of 126

RAPTOR_call_GPU_code_STOP

This function will set the GPU PC to the specified address and start it running, and
then HALT the 68000 until the next VBI occurs.

Expected inputs:

A0 Address to set the GPU PC

Outputs:

None

RAPTOR Engine manual

Page 29 of 126

RAPTOR_call_GPU_code_nowait

This function will set the GPU PC to the specified address and start it running, and
then immediately continue execution on the 68000.

Expected inputs:

A0 Address to set the GPU PC

Outputs:

None

RAPTOR Engine manual

Page 30 of 126

RAPTOR_GPU_COLLISION (EX-04b)

This function will call the RAPTOR collision module. It will perform hitpoint/damage
on all colliding RAPTOR object(s) and flag a global ‘collision occurred’ variable, and
also tag each colliding object.

Expected inputs:

raptor_sourcel RAPTOR Object index value for source range (low)

raptor_sourceh RAPTOR Object index value for source range (high)

raptor_targetl RAPTOR Object index value for target range (low)

raptor_targeth RAPTOR Object index value for source range (high)

Outputs:

raptor_result Global flag indicating at least one collision occurred

This function will compare all objects between raptor_sourcel and raptor_sourceh
against all objects between raptor_targetl and raptor_targeth.

If any of the objects have their cant_hit flag set they will be skipped.

If a collision occurs (defined by the target box values in the object definition list) the
damage value of the source is subtracted from the hitpoint value of the target, and the
sprite_was_hit flag is set in the target object.

If the target hitpoints go negative the object will obay it’s keep or remove definition.

The sprite_was_hit flag needs to be reset before another collision test occurs.

RAPTOR Engine manual

Page 31 of 126

RAPTOR_HEX_to_DEC (EX-04c)

This function will convert a hexadecimal value into ASCII decimal.

Expected inputs:

D1 Hexadecimal value to convert

D4 Number of digits in the output string -1

A0 Address to store the converted string

Outputs:

(A0) String of characters (D4 long) with converted number

RAPTOR Engine manual

Page 32 of 126

RAPTOR_particle_injection_GPU (EX-05a)

This function will update the particle database with the specified particle effect
pattern.

Expected inputs:

raptor_part_inject_addr Pointer to the particle effect structure to inject

Outputs:

None

RAPTOR Engine manual

Page 33 of 126

Particle Effect Structure

The structure(s) for the particle effects are located in the _RAPPIXL.S file, and are
defined as below:

X X position to start the effect

Y Y position to start the effect

Pixel count Number of pixels in the effect

This is immediately followed by a list of pixel definitions, one for each specified by
Pixel count above.

Angle Angle particle will move at (0-511)
Note: zero is EAST, 128 is SOUTH, 256 is WEST and
384=NORTH

Speed The speed the particle will travel along the specified
angle

Angular velocity The rate of turn applied each update. Positive
numbers will rotate clockwise, negative will rotate
anti-clockwise

Initial colour The initial colour (0-15) for the pixel. The palette used
is specified in the PARTIPAL.BMP file, and is the same
used for the fonts

Colour decay rate Frame delay between each colour step downwards

Pixel life How long the pixel will remain active (in frames)

RAPTOR Engine manual

Page 34 of 126

RAPTOR_U235setmodule (EX-06a)

This function will call the U235 Sound Engine to set a module to play.

Expected inputs:

A0 Pointer to the module to play

Outputs:

None

RAPTOR Engine manual

Page 35 of 126

RAPTOR_U235gomodule_stereo (EX-06a)

This function will start the specified module playing in stereo mode. Playback is at 16
khz.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 36 of 126

RAPTOR_U235gomodule_mono

This function will start the specified module playing in mono mode. Playback is at 16
khz.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 37 of 126

RAPTOR_U235playsample (EX-06b)

This function will call the U235 Sound Engine to play the specified sound effect.

Expected inputs:

D0 Sound effect to play

D1 Channel to play sound effect on (0-7).

Note: Channels 0-3 are used for module playback.

Outputs:

None

The sound effects are defined in the _RAPU235.S file. Their format is as defined in the
U235 Sound Engine manual.

RAPTOR Engine manual

Page 38 of 126

RAPTOR_U235stopDSP

This function will halt the DSP and silence the channels. Doing so will shut down all
U235 Sound Engine functions, including Jagpad reading and the random number
generator.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 39 of 126

RAPTOR_U235stopmodule

This function will halt any currently playing module and silence the audio channels
used for music.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 40 of 126

RAPTOR_chk_highscores (EX-09a)

This function compares a specified high score against the internal top ten list.

Expected inputs:

D0 Score to test

Outputs:

D0 Result.

Negative = score not in top 10
Positive = score is a new top 10 entry

If the result is positive, the RAPTOR_resort_score_table function must be called.

RAPTOR supports a top ten list, storing both a 32-bit score and an 8 character name
for each entry.

RAPTOR Engine manual

Page 41 of 126

RAPTOR_resort_score_table (EX-09a)

This function will update the top 10 scoreboard with the last score, using the specified
name.

Expected inputs:

A0 Pointer to 8 character name to enter into the table.

Outputs:

None

RAPTOR Engine manual

Page 42 of 126

RAPTOR_mt_save (EX-09b)

This function will save the top 10 table to the MemoryTrack using the application
name and filename specified in _RAPINIT.S. If no MemoryTrack is present, the
function will exit cleanly.

The RAPTOR_HWinit function will auto-load the high score table if the MemoryTrack
is present and the specified application name and file name exist.

Expected inputs:

None

Outputs:

None

Note: RAPTOR will use the following variables for saving, which are auto-loaded with
a pointer to the high score data and its length during RAPTOR_HWinit.

RAPTOR_MT_start_address Memory address to save from

RAPTOR_MT_save_length Number of bytes to save

RAPTOR Engine manual

Page 43 of 126

RAPTOR_mt_load

This function will load data from the MemoryTrack into main RAM.

The RAPTOR_HWinit function will auto-load the high score table if the MemoryTrack
is present and the specified application name and file name exist.

Expected inputs:

RAPTOR_MT_start_address Memory address to save from

RAPTOR_MT_save_length Number of bytes to load

Outputs:

None

RAPTOR Engine manual

Page 44 of 126

RAPTOR_init_map_objs (EX-10)

This function configures the Tile Map system. It requires the variables for the Tile
Map engine to be configured before RAPTOR_HWinit.

It also requires that a special structure layout is present in _RAPINIT.S – which will be
described in the Examples section (for EX-10)

Expected inputs:

raptor_mapindex Pointer to the map data

Outputs:

None

RAPTOR Engine manual

Page 45 of 126

RAPTOR_map_set_position (EX-10)

This function sets the X and Y co-ordinates (in pixels and sub-pixels) for the top-left of
the map to be displayed on the screen.

Expected inputs:

raptor_map_position_x 16.16 map co-ordinate (x)

raptor_map_position_y 16.16 map co-ordinate (y)

Outputs:

None

RAPTOR Engine manual

Page 46 of 126

RAPTOR_d_lz77

This function decompresses LZ77 compressed data.

Expected inputs:

A0 Pointer to compressed data

A1 Address to decompress data into

Outputs:

None

RAPTOR Engine manual

Page 47 of 126

RAPTOR_ERROR

This function will effectively halt the application and flash the background colour. It
will never return. It is useful for debugging.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 48 of 126

RAPTOR_Version (EX-01b)

This function will return a pointer to a string containing the RAPTOR version number.

Expected inputs:

None

Outputs:

A0 Pointer to string containing version number

RAPTOR Engine manual

Page 49 of 126

Non-RAPTOR Objects

This section will cover the hooks and function calls for creating and manipulating
objects that are not managed by the RAPTOR Engine.

These routines are based on the Sinister Developments Object Library.

RAPTOR Engine manual

Page 50 of 126

RAPTOR_PRE_Object_List & RAPTOR_POST_Object_List

These two routines exist in the application code written by the user. During
RAPTOR_HWinit these routines will be called before and after the creation of the
RAPTOR objects defined in _RAPINIT.S.

If Non-RAPTOR controlled objects are not required, these two functions should
contain a single RTS.

They are used to insert Non-RAPTOR objects into the Object List that can be
managed directly, without RAPTOR updating them.

RAPTOR Engine manual

Page 51 of 126

RAPTOR_CreateObject

This function will create a new object in the Object list.

Expected inputs:

D0 Object type:
0 – Bitmap Object
1 – Scaled Bitmap Object
2 – GPU Object
3 – Branch Object
4 – Stop Object

D1 Height (in pixels) of Object

D2 Width (in bytes) of a single line of the image

D3 Colour depth
0 - 1bpp
1 - 2bpp
2 - 4bpp
3 - 8bpp
4 - 16bpp
5 - 24bpp

D4 Transparency
0 – Opaque
1 – Transparent

D5 Image Width (in bytes) of the rendered image

A0 Address of the object

A1 Pointer to the bitmap data

Outputs:

None

RAPTOR Engine manual

Page 52 of 126

RAPTOR_rmw

This function will convert the previous object made with RAPTOR_CreateObject into a
CRY (Read/Modify/Write) Object.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 53 of 126

RAPTOR_setpalt

This function will set the CLUT for the previous object made with
RAPTOR_CreateObject

Expected inputs:

D0 CLUT (0-15) to set

Outputs:

None

RAPTOR Engine manual

Page 54 of 126

RAPTOR_reflect

This function will set the MIRROR bit for the previous object made with
RAPTOR_CreateObject – effectively flipping the bitmap horizontally.

Expected inputs:

None

Outputs:

None

RAPTOR Engine manual

Page 55 of 126

RAPTOR_setup_object_xyg

This function will change the X, Y positions and Bitmap Address for a Non-RAPTOR
Object.

Expected inputs:

A0 Pointer to a Non-RAPTOR Object

D0 New X-Position (Not Sub-Pixel)

D1 New Y-Position (Not Sub-Pixel)

D2 New Bitmap Address

Outputs:

None

RAPTOR Engine manual

Page 56 of 126

RAPTOR_setup_object_xg

This function will change the X position and Bitmap Address for a Non-RAPTOR
Object.

Expected inputs:

A0 Pointer to a Non-RAPTOR Object

D0 New X-Position (Not Sub-Pixel)

D2 New Bitmap Address

Outputs:

None

RAPTOR Engine manual

Page 57 of 126

RAPTOR_setup_object_g

This function will change the Bitmap Address for a Non-RAPTOR Object.

Expected inputs:

A0 Pointer to a Non-RAPTOR Object

D2 New Bitmap Address

Outputs:

None

RAPTOR Engine manual

Page 58 of 126

RAPTOR_setup_object_xy

This function will change the X and Y position for a Non-RAPTOR Object.

Expected inputs:

A0 Pointer to a Non-RAPTOR Object

D0 New X-Position (Not Sub-Pixel)

D1 New Y-Position (Not Sub-Pixel)

Outputs:

None

RAPTOR Engine manual

Page 59 of 126

RAPTOR_setup_object_xyz

This function will change the X, Y and Scale Ratio for a Non-RAPTOR Object.

Expected inputs:

A0 Pointer to a Non-RAPTOR Object

D0 New X-Position (Not Sub-Pixel)

D1 New Y-Position (Not Sub-Pixel)

D3 Horizontal Scale value

D4 Vertical Scale value

Outputs:

None

RAPTOR Engine manual

Page 60 of 126

RAPTOR_user_vbi (System Hook)

This routines exist in the application code written by the user. It is called by the
RAPTOR core every VBI, and allows the user to synchronise code under interrupt.

No registers are saved or restored around this function. It is the user’s responsibility to
manage this.

Exiting the user routine is via an RTS command.

If this hook is not required it must point to an RTS.

RAPTOR Engine manual

Page 61 of 126

RAPTOR Initialization File (_RAPINIT.S)

This file contains the human readable scripts (RAPTOR Lists) used to generate the
visible screens generated by RAPTOR Engine. It also contains the MemoryTrack
Application and Filenames.

The file is defined as below:

MemoryTrack configuration Info Application and Filename used by
MemoryTrack routines

>RAPTOR< Denotes the start of the RAPTOR data

LIST Denotes the start of a RAPTOR list

List Data Per-object data for the items in the list

STOP Denotes the end of a RAPTOR list

<RAPTOR> Denotes the end of the RAPTOR data

RAPTOR Engine manual

Page 62 of 126

RAPTOR List Data

This file contains the human readable definitions for the Objects used to generate a
‘scene’

The LIST is defined as below:

REPEAT COUNTER Create this many objects of this type (or 1 for a single
object)

sprite_active Active / Inactive flag

sprite_x Object X co-ordinate in 16.16 format

sprite_y Object Y co-ordinate in 16.16 format

sprite_xadd Value to auto-add each call to sprite_x

sprite_yadd Value to auto-add each call to sprite_y

sprite_width Width of Object (in pixels)

sprite_height Height of Object (in pixels)

sprite_flip Flag for horizontally flipping in the image data

sprite_coffx X offset from center for collision box center

sprite_coffy Y offset from center for collision box center

sprite_hbox Width of collision box

sprite_vbox Height of collision box

RAPTOR Engine manual

Page 63 of 126

sprite_gfxbase Pointer to bitmap data

BIT_DEPTH Bitmap depth (1/2/4/8/16/24)

CRY / RGB Bitmap graphics type

TRANSPARENCY Object transparency flag

sprite_framesz Size (in bytes) of a single frame of sprite data

sprite_bytewid Size (in bytes) of a single horizontal line of sprite data

sprite_animspd Frame delay between animation changes

sprite_maxframe Number of frames in animation chain

sprite_animloop Play once / Repeat flag for animation chain

sprite_wrap Flag for screen edge wrap or remove

sprite_timer Frames sprite is active for (or -1 for infinite)

sprite_track Flag for 16.16 updates, or pointer to an x/y table

sprite_tracktop Loop point in x/y table (if used)

sprite_scaled Flag for if Object is scaled or unscaled

sprite_scale_x Horizontal scale factor

sprite_scale_y Vertical scale factor

RAPTOR Engine manual

Page 64 of 126

sprite_was_hit Collision flag

sprite_CLUT CLUT Index value

sprite_colchk Flag defining if Object can collide with another

sprite_remhit Flag to define if sprite is removed on collision or not

sprite_bboxlink Flag for single bounding box, or pointer to box datalist*

sprite_hitpoint Hitpoints for this Object

sprite_damage Hitpoints deducted from colliding object

sprite_gwidth Object bitmap width of data (in bytes)

*Multiple Bounding Box List

Multiple bounding box collision lists are defined as below

Number of Boxes Number of bounding boxes for this Object

X-Offs x-offset from the middle of the object for current box

Y-offs y-offset from the middle of the object for current box

Width Bounding box width /2

Height Bounding box height /2

RAPTOR Engine manual

Page 65 of 126

RAPTOR Examples

This section of the manual will describe the RAPTOR example code provided with this
library. It will break down the example code, detailing what has been added between
each example and describing the code’s function.

It will start with a simple ‘Hello World’ example, moving through list manipulation to
add graphics, sprites, animation, movement, collision management, particle effects,
audio functions, multiple list manipulation, memory track and high score
management and finally tile maps.

While basic explanation of 68000 instructions may be given to help explain a specific
feature this manual is not intended as a 68000 primer. Some basic knowledge of the
processor and its instruction set is assumed.

RAPTOR Engine manual

Page 66 of 126

EX-01a – Hello World

The first example will demonstrate how to get a simple “Hello World” message on the
screen.

Firstly we need to set up a screen buffer for us to write into. This is done by adding a
bitmap object into the RAPTOR list, located in _RAPINIT.S.

Below is the _RAPINIT.S for EX-01a:

At the top we set up a dummy MemoryTrack application name and file name, we
won’t be using these just yet, but RAPTOR expects them to be present.

Below this is the raptor_init_table – this is where all RAPTOR objects are defined. The
RAPTOR table always starts with ‘>RAPTOR<’ and ends with ‘<RAPTOR>’.

Inside this table there can be a single RAPTOR List, or multiple RAPTOR Lists (Max
16). Each individual List starts with a ‘LIST’ command and ends with a ‘STOP’
command.

RAPTOR Engine manual

Page 67 of 126

For example, a single List would look like this:

 >RAPTOR<
 LIST
 List Object Data
 STOP
 <RAPTOR>

Where a table with multiple Lists would look like this:

 >RAPTOR<
 LIST
 List #0 Object Data
 STOP
 LIST
 List #1 Object Data
 STOP
 LIST
 List #2 Object Data
 STOP
 <RAPTOR>

For this example all we require is a bitmap to draw some text into. The RAPTOR
Engine uses the Particle Buffer for all text output.

There is a pre-written file already set up for the particle layer object, called
PARTLIST.S, which is located in the RAPTOR\INCS folder. We will use that here as
our only object.

This buffer uses CLUT 15 of the palette (Colours 240-256). The colour data for this
buffer comes from the file PARTIPAL.BMP located in the RAPTOR\FONTS folder. All
fonts (also located in this folder) will use the same palette data as this file, regardless
of the palette data stored in their own font file.

This is all we need in the _RAPINIT.S file for this example.

RAPTOR Engine manual

Page 68 of 126

Now that we have our display buffer configured lets write some code to get Hello
World on the screen.

As you can see above, this is a very short application.

First we call RAPTOR_HWinit to set up the system, followed by RAPTOR_start_video
which enables video generation.

We then have to tell RAPTOR which List to display, in this example we only have the
one. Lists are numbered 0-15. In order to keep this human readable, an alias for this
list, called ‘LIST_display’ has been created, and given a value of 0. This value is passed
to the function RAPTOR_setlist.

Now, in order to get the Objects in the List on the screen, we need to update RAPTOR.
This is done with the function RAPTOR_UPDATE_ALL.

We now have a bitmap window on the screen ready for us to draw onto, so the next
lines send some text to the screen. A pointer to the text is placed in the A0 register. X
and Y co-ordinates are placed in D0-D1. The initial font size and index values are
placed in D2 and D3, and finally RAPTOR_print is called.

After this, we simply loop around to infinity.

Note: X values are rounded down to the nearest even value. Text cannot be plotted on
odd horizontal values.

RAPTOR Engine manual

Page 69 of 126

EX-01a – Screen Output

Functions Introduced

• RAPTOR_HWinit

• RAPTOR_start_video

• RAPTOR_setlist

• RAPTOR_print

• RAPTOR_UPDATE_ALL

RAPTOR Engine manual

Page 70 of 126

EX-01b – Text Commands

Expanding on the first example, we will now add some text commands to the string
sent to the screen to demonstrate the text functions built into RAPTOR.

The _RAPINIT.S file remains the same.

These lines call the RAPTOR function RAPTOR_Version, which returns a pointer to a
string containing the RAPTOR version number. We then print this string at X (20), Y
(210), using the topmost font (Index = 0) in the 16x16 (Size = 2) font bitmap.

These additional commands are described in the Print Commands section, earlier in
this manual.

RAPTOR Engine manual

Page 71 of 126

EX-01b – Screen Output

Functions Introduced

• RAPTOR_Version

RAPTOR Engine manual

Page 72 of 126

EX-02a – List Objects (Backdrop)

Now we have some text on the screen, but that is pretty boring, so now we will add a
backdrop image. We will also change the text to say something more game-like, such
as ‘SCORE: 00000000’.

To do this we need to modify the _RAPINIT.S file to add another object, as shown
below:

Objects are displayed on screen in a back-to-front order. The higher up the list an
object is, the further back it is displayed. We want our text to appear on top of the
background picture, so the particle layer has to come after the new background object.

This object in detail is shown in the following table:

RAPTOR Engine manual

Page 73 of 126

1 REPEAT COUNTER There is a single instance of this object

is_active sprite_active Object is active (Will be displayed)

0,0 sprite_x X position to display (in 16.16 sub-pixel
format)

0,0 sprite_y Y position to display (in 16.16 sub-pixel
format)

0,0 sprite_xadd Object is stationary in X direction

0,0 sprite_yadd Object is stationary in Y direction

352 sprite_width Object is 352 pixels wide

240 sprite_height Object is 240 pixels high

is_normal sprite_flip Object is not horizontally flipped

0 sprite_coffx X offset from center for collision box

0 sprite_coffy Y offset from center for collision box

352/2 sprite_hbox Width of the collision box from the
collision center point

240/2 sprite_vbox Height of the collision box from the
collision center point

BMP_BACKDROP sprite_gfxbase Pointer to the bitmap data

16 BIT_DEPTH Bitmap depth (1/2/4/8/16/24)

is_RGB CRY/RGB Specifies if object is CRY or RGB

RAPTOR Engine manual

Page 74 of 126

is_opaque TRANSPARENCY Transparency

352*240*2 sprite_framesz Size (in bytes) of a single frame of the
image. In this case the image is 352*240
pixels, and 16 bpp (2 bytes per pixel)

352*2 sprite_bytewid Size (in bytes) of a single line of the
image.

0 sprite_animspd Animation speed. As this is a single
image, it is set to zero

0 sprite_maxframe Number of frames in the animation chain
(1st frame = 0)

ani_rept sprite_animloop Repeat (0) or play once (1)

edge_wrap sprite_wrap Screen edge condition. If sprite moved off
the edge of the screen it will wrap to the
other side

spr_inf sprite_timer The number of frames the sprite will be
active for

spr_linear sprite_track This flag sets how the object is to be
updated. If set to linear it means the
object will use the X/Y positions,
otherwise it is a pointer to a pre-
determined set of x/y co-ordinates.

0 sprite_tracktop If following a pre-determined path, this is
a pointer to the loop position

spr_unscale sprite_scaled Object can be either scaled, or unscaled.

%00100000 sprite_scale_x Object scaling value (horizontal)

RAPTOR Engine manual

Page 75 of 126

%00100000 sprite_scae_y Object scaling value (vertical)

-1 sprite_was_hit Collision flag. -1 = not hit

no_CLUT sprite_CLUT CLUT to use for colour data. As this is a
16bpp image no CLUT is required

cant_hit sprite_colchk Flag to decide if object can collide. As
this is the backdrop, there is no need for
collision.

cd_keep sprite_remhit Condition to perform is a collision
occurs. In this case, keep the object alive.

single sprite_bboxlink Flag for a single bounding box used for
collision, else this is a pointer to a
bounding box collision list

1 sprite_hitpoint Object hit points

2 sprite_damage Damage inflicted on colliding object

352*2 sprite_gwidth Width of bitmap data. Keep this the same
as sprite_bytewid for standard image.
Used for offset effects.

This defines the object in the list, now we need to add some code to the _RAPAPP.S

file to configure this object.

RAPTOR Engine manual

Page 76 of 126

So that we can identify the objects easily, we will set up some human readable names:

We will be using a TGA file for the backdrop image. The Jaguar hardware does not

know how to display images in this format, so we need to convert it to Jaguar Bitmap

format before use.

And lastly, we need to include the image in the binary.

RAPTOR Engine manual

Page 77 of 126

EX-02a – Screen Output

Functions Introduced

• RAPTOR_GFXConvert

RAPTOR Engine manual

Page 78 of 126

EX-02b – List Objects (Player)

The next thing we will add is a player spaceship object, positioned at the bottom
middle of the screen.

To do this we will need to add another object to the List structure. We will place this
object after the background object, but before the text layer.

Most of the structure will be the same as the backdrop, however the following
attributes will be changed:

The X and Y positions will be set to 180 (X), 220 (Y)

The width and height of the object are both set to 16 (16x16 sprite)

The collision bounding box width and height are set to 8 (8 pixels from the center, in
each direction)

The bitmap pointer is set to point to our sprite data, is set to 4Bpp (16 colours), RGB,
Transparent. The frame size is 16*16/2 (1 byte = 2 pixels), and the bytewidth is set to
16/2 (8 bytes per line). We have also set the animation frames to zero (only one frame)

We have created a human readable alias (CLUT_player) to define the CLUT location
for these 16 colours, and for now we’ll tell RAPTOR that the object cannot be hit.

RAPTOR Engine manual

Page 79 of 126

Our sprite data bitmap will look like this:

Sprites frames are numbered from zero (0) at the top, incrementing by 1 as they go
down. The animation sequence is played bottom upwards.

Now we need to edit _RAPAPP.S to finish these changes off.

Another human readable alias is created for the player, along with a CLUT_ reference.

Again, we have to convert the bitmap (this time, a 4bb Windows BMP) to Jaguar
Bitmap format. As this is a paletted image (16 colours) we also need to move the
palette data into the correct position in the CLUT. The Jaguar palette data starts at
hardware address $f00400, each CLUT is 16 colours, with 2 bytes per colour, as can be
seen by the line setting the A1 register. Finally we call RAPTOR_move_palette to copy
the converted palette to the display CLUT.

You will note that the first image in the file is displayed for the player ship, and that it
does not animate.

RAPTOR Engine manual

Page 80 of 126

EX-02a – Screen Output

Functions Introduced

• RAPTOR_move_palette

RAPTOR Engine manual

Page 81 of 126

EX-02c – List Objects (Player Animation)

Now we have a player object on the screen, but it isn’t animating. The bitmap data file
has 6 frames of animation, which we will now enable.

In the _RAPINIT.S file we make the following changes:

The sprite_animspd field is set to 3, this means that every 3 vertical blanks the next
frame will be swapped in.

The sprite_maxframe field is set to 5. Frames start at zero, so for this sprite 6 frames
this is the correct number.

While we are here, we also make the following change:

This will allow the collision detection later on to collide with this object.

In the _RAPAPP.S file we have to make the following changes:

Previously nothing was moving or animating, so the main loop could happily keep
repeating to infinity. Now, however, we want some animation to occur.

To accomplish this, we add the call to RAPTOR_wait_frame_UPDATE_ALL.

This command will synchronise to the vertical blank, and then update all active
RAPTOR Objects and Particles.

Nothing else needs to be changed, we now have an animating sprite at the bottom of
the screen.

RAPTOR Engine manual

Page 82 of 126

EX-02c – Screen Output

Functions Introduced

• RAPTOR_wait_frame_UPDATE_ALL

RAPTOR Engine manual

Page 83 of 126

EX-02d – List Objects (Enemies)

Next we need to introduce some enemies. We could define them, one at a time, as we
have done the player. While that would work it would be extremely tedious, so instead
we are going to use the object repeat counter. In the _RAPINIT.S file we add another
object.

This will create 50 copies of the object defined below, giving us 50 enemy objects.

All the other fields are the same as the player, with the exception of:

Which sets a different bitmap for the enemies, and:

Which sets up a different CLUT for them, keeping their colour data separate from the
player.

Now we need to make some changes to the _RAPAPP.S file.

You will notice that the ID_textlayer is set to ID_enemy+50. By setting the current
object to the previous value plus the number of repeats of the previous object, we can
save ourselves the bother of having to calculate the index value when things change.
We have also created another CLUT_ value for the enemies.

We also convert the enemy bitmap, exactly as we did for the player sprite.

RAPTOR Engine manual

Page 84 of 126

We are also going to create our first subroutine. This will be a routine that will reset
the enemy positions back to the starting point.

We call the subroutine with the following line:

And define it, below the main loop, as follows:

We will now break this down further.

To make changes to the enemy objects we need to change their field values in the
RAPTOR internal database. This is the main reason we have been adding the
ID_name tags at the top of the source code listing.

The database starts at location RAPTOR_sprite_table, and each entry in the table is
sprite_tabwidth wide (ie, it takes sprite_tabwidth bytes for one entry.) To calculate the
position of the first enemy we use:

The next two lines set up an initial Y position, and a counter for the number of rows.
There will be 5 rows of 10 (50 objects) so the row counter is set to 4 (68000 DBRA
loops while positive, so it will loop on zero)

Next, we set the initial X position each row. This will get reset each time around the
vertical loop, so each row will start at the same position, and we set the objects per
row counter to 9 (10 objects).

The inner loop configures the actual objects. We move the X and Y positions into the
fields, increment the object pointer to the next object, add 20 to the X position, and
loop around.

RAPTOR Engine manual

Page 85 of 126

We add 20 to the Y position, and again loop around for each line. Finally we exit the
routine with an RTS (Return Subroutine) instruction.

Finally, we include the bitmap for the enemy objects:

RAPTOR Engine manual

Page 86 of 126

EX-02d – Screen Output

RAPTOR Engine manual

Page 87 of 126

EX-03a – Movement (Automovement)

We now have a group of enemies animating away on the screen. But how can we
make them move?

There are a few ways to make objects move using RAPTOR. We can directly update
their X/Y positions in the database, we can use a pre-defined file of X/Y co-ordinates,
or we can use auto-movement.

To accomplish this, we are only going to make one change to the previous example.

In _RAPINIT.S we will alter the following line in the enemy definition:

This field (and the one for Y below it) tell RAPTOR what value to add to the X and Y
co-ordinates every update. Like the co-ordinates themselves, they are 16.16 fractional
values.

Each co-ordinate in RAPTOR is stored as a fractional value, composed of an integer
part (the high 16 bits) and a fractional part (the low 16 bits) which allows RAPTOR to
position Objects with sub-pixel accuracy.

You will notice the xadd value above is $0000,$8000. The integer part is set to zero,
but the sub-pixel fractional part is set to $8000 – this is exactly 50% of a whole unit
($8000 is one-half of $10000). What this effectively means is that the enemies will
move right half a pixel every update, or once every other frame.

When they reach the right hand edge of the screen they will auto-wrap back to the left
side, because the field…

…is set.

RAPTOR Engine manual

Page 88 of 126

EX-03a – Screen Output

RAPTOR Engine manual

Page 89 of 126

EX-03b – Movement (Code Controlled)

OK, so now we have movement, but it isn’t really space invaders. The enemies need to
march down the screen, alternating direction when they hit the edge. To do that, we
need to update them programmatically, and to do that we are going to use another
subroutine.

In the main loop we add the following command:

To call the subroutine below:

The comments in the code for this section should be sufficient explanation of the
code.

The Object positions are checked to see if they hit the edge (X=19, or X=320), and if so
change_direction is called. This resets the X-direction of the auto-movement field,
increments the objects Y-position, and checks if it has ‘landed’ at the bottom. If it has,
it resets the formation.

RAPTOR Engine manual

Page 90 of 126

EX-03b – Screen Output

RAPTOR Engine manual

Page 91 of 126

EX-03c – Movement (Jagpad Controlled)

Now we need to get our player moving. To do this we are going to need to use some
functions external to RAPTOR, as Joypad input is provided by the U235 Sound Engine
library.

RAPTOR contains ‘wrapper calls’ to make using the Sound Engine slightly easier to
call from within your own application however there is no reason why you couldn’t
make the design decision to not use these and directly access the U235 Sound Engine
functions yourself.

For further details regarding the direct use of the Sound Engine please see the
manual.pdf provided with that package, which is also included inside the RAPTOR zip
file archive.

To initialize the sound engine we use the following line:

In the main loop of the code we need another subroutine to manage the player
movement:

Which we define as below:

Again, the comments in the code for this section should be sufficient explanation.

The joypad is scanned for left and right, and if the player is not already at a limit its
position is updated.

RAPTOR Engine manual

Page 92 of 126

EX-03c – Screen Output

Functions Introduced

• RAPTOR_U235init

RAPTOR Engine manual

Page 93 of 126

EX-04a – Object Spawning

We now have the player able to move, and the enemies marching around the screen.
Next we will add a ‘bullet’ that the player can fire, shooting upwards. To do this we
need to spawn new objects.

To start with, we need to define some bullet objects in the _RAPINIT.S file:

We’ll again use the REPEAT COUNTER to define 5 bullets at the same time. The
second line sets the objects to inactive status. This means they will not be drawn on
the screen. Their height and width is set to 4, the collision bounding box is set to 4/2,
the bitmap pointer is set to point to our TGA file containing the bullets image and the
animation, collision and size entries are all set to their relevant value.

Other changes to previous objects are that sprite_remhit is set to cd_remove, meaning
the object will deactivate if it collides with another object, and that sprite_wrap is set
to edge_kill, meaning the object will be deactivated if it goes off the edge of the screen
instead of jumping to the other side.

In _RAPAPP.S we once again convert the bitmap:

RAPTOR Engine manual

Page 94 of 126

We will also add another subroutine to the main loop to deal with shooting:

Which is defined below as:

The button will only be polled if 10 frames have passed since the last button press was
registered. This prevents a constant stream of bullets being spawned.

We then search through the available bullet objects to find an inactive one. Once
found we set the repeat delay back to 10 frames and configure the new object.

We copy its X/Y position from the player and add an offset to center the object
correctly. We then set the bullets sprite_yadd value to -2 so that it will track vertically
up the screen on its own, with no intervention from us. Lastly we clear its collision
flag and reset sprite_hitpoints, and finally we set sprite_object to active.

The bullet will spawn and move up the screen on its own, erasing itself when it goes
off the top of the screen.

You will note that if passes through the enemies, even though it has its collision flags
set. This is because no collision detection has been performed, which we will add next.

Finally, we include the bitmap for the bullets

RAPTOR Engine manual

Page 95 of 126

EX-04a – Screen Output

RAPTOR Engine manual

Page 96 of 126

EX-04b – Object Collisions

At this point, we have all our objects on the screen, their fields are set to enable
collisions, hit points and damage, but nothing is happening when they collide. The
reason for this is that we have not called the collision routine.

We will add another subroutine to the main loop:

We will also add another subroutine to check if all the enemies are dead, and if so, we
will reset the formation.

First we reset the global collision flag. This flag will indicate if anything collided
during the check. It will not tell us what collided, only that something did. For our
purposed this will be sufficient at the moment.

The first call checks all the player bullets against all the enemies. We don’t care if
anything hit, because the collision engine will do hit-point deduction and remove any
object that becomes ‘dead’. As the damage on the bullet is set to 2, and the hit-point of
the enemies are set to 1, a single hit will destroy an enemy. Because the flag on the
enemy and the bullet is set to remove the object, RAPTOR will take it out of the visible
list and set its status to ‘is_inactive’.

RAPTOR Engine manual

Page 97 of 126

The next check compares all the enemies against the player. If the player was hit then
the enemy formation is reset.

At this point we have a functional (if very simplistic) shoot ‘em up game without any
code to manage:

• Enemy location

• Bullet location

• Player location

• Bullet movement

• Enemy Movement

• Enemy removal upon collision

• Bullet removal from the screen

This is where RAPTOR Engine puts the programmer in control of their game idea,
rather than having them tied up with the complexity of the object management.

RAPTOR Engine manual

Page 98 of 126

EX-04b – Screen Output

Functions Introduced

• RAPTOR_call_GPU_code

• RAPTOR_GPU_COLLISION

RAPTOR Engine manual

Page 99 of 126

EX-04c – Identifying Collisions

For scoring purposes knowing that something was hit is not good enough. We need to
know how many were hit so we can adjust the score accordingly. To do this we will
identify what objects were hit during the collision detection function.

We will insert another subroutine call into the main loop:

Which will execute the subroutine below:

This routine loops around the enemy table checking if the sprite_was_hit flag has been
set. If it has, we reset it, and increment the score counter. This ensures we score 1
point for every enemy successfully hit by a bullet.

We now also need to update the score at the top of the screen, we will do this via
another subroutine in the main loop

Which is defined as:

This introduced another command, RAPTOR_HEXtoDEC which converts a
hexadecimal value (in this case the score) into an ASCII string.

D1 is loaded with the value to convert, D4 is set to the number of characters to display
minus one. We are printing 8 characters in the score board (‘00000000’) so this is set
to 7. Finally, A0 points to the output buffer and the routine is called.

RAPTOR Engine manual

Page 100 of 126

EX-04c – Screen Output

Functions Introduced

• RAPTOR_HEXtoDEC

RAPTOR Engine manual

Page 101 of 126

EX-05 – Particle Effects

RAPTOR has a built in Particle (or Pixel) Engine that can inject and manage pixels on
a per-pixel basis without any user intervention. We will use this in the example game
to add an exploding effect when an enemy is hit.

First of all, we must define the particle effect in _RAPPIXL.S, as shown below:

This first two longwords contain the 16.16 X and Y co-ordinates that will act as the
origin of the effect. We will later copy the co-ordinates of the destroyed enemy to this
location before using the RAPTOR_particle_injection_GPU function.

Next, we store the number of particles (pixels) in this effect, in this case 16.

Then follows a line for each pixel detailing its initial angle, speed, angular speed, initial
colour, colour decay rate and pixel lifetime. The pattern above will give a starburst
effect, as the angles range from 0 to 512 and are evenly distributed.

RAPTOR Engine manual

Page 102 of 126

We already have a ‘what_was_hit’ routine, so we already know which enemies were hit
by anything. We will modify this routine to add the explosion effect, as below:

If the enemy was hit we perform the following:

• Get the enemy X-position

• Add 8 pixels to it (remember, $00080000 is 8.0 in 16.16 sub-pixel format)

• Store this at the start of the defined particle effect in the pre-defined space for
the X co-ordinate.

• Get the enemy Y-position

• Add 8 pixels to it

• Store this after the X position, completing the X/Y values

• Point the Particle Injection Routine at the effect table

• Call the RAPTOR_particle_injection_GPU function to start the effect

RAPTOR Engine manual

Page 103 of 126

EX-05 – Screen Output

Functions Introduced

• RAPTOR_particle_injection_GPU

RAPTOR Engine manual

Page 104 of 126

EX-06a – Audio (Music)

RAPTOR uses the U235 Sound Engine as its Audio subsystem. The Sound Engine can
be accessed directly (see the U235 manual) or you can use the RAPTOR wrapper
functions for audio output.

To start, we will get some music playing.

Following the RAPTOR_U235init call we will set a pointer to our module file, and call
RAPTOR_U235setmodule to initialize it.

We will then start it playing with RAPTOR_U235gomodule_stereo to start music
playback.

In our data section at the bottom we will include the module file:

Nothing else needs to be done, the music will play and loop to infinity.

Note: The RAPTOR wrappers will lock the replay frequency to 16khz. If you wish to
use another frequency you will have to access the U235 Sound Engine directly.

RAPTOR Engine manual

Page 105 of 126

EX-06a – Audio (Music)

Functions Introduced

• RAPTOR_U235setmodule

• RAPTOR_U235gomodule_stereo

RAPTOR Engine manual

Page 106 of 126

EX-06b – Audio (Sound Effects)

Now we will add some sound effects. To keep it simple we will just add effects for
shooting and an explosion when something gets destroyed (an enemy or the player)

To do this we need to edit the _RAPU235.S file:

These definitions follow the exact same specification as described in the U235 Sound
Engine manual.

At the end of the Player_Shooting subroutine we will add a call to play the sample:

And in the Check_Collisions routine we will check the global flag raptor_result after
the bullets vs enemies check, and all the following code:

All that is left is to include the audio files into the binary:

RAPTOR Engine manual

Page 107 of 126

Functions Introduced

• RAPTOR_U235playsample

RAPTOR Engine manual

Page 108 of 126

EX-07 – Multiple Lists

Now we have a playable (if simple game) – but what if we want to add a title screen?
This is where multiple RAPTOR Lists are used.

In the file _RAPINIT.S we will add a second list:

As is shown above, we start the 2nd list with ‘LIST’ and end it with another ‘STOP’
before finally closing the list with ‘<RAPTOR>’.

You will also note that we have again included the same file for a text layer. The text
layer (or any object) can be included in multiple lists which is very useful for saving
memory. It should be noted, however, that setting fields on the text/particle layer in
this second list will not change any of the values for the text/particle later in other
lists. While they share a common bitmap memory address they are two completely
different RAPTOR objects.

RAPTOR Engine manual

Page 109 of 126

We will also add a human friendly name for this list at the top of _RAPAPP.S as below:

And the following code to add our title screen:

We set the list, print some text and then loop around until B is pressed on the Jagpad.
At that point we clear the text screen (we’re using the same buffer in the game, so we
have to clear it or the text will remain in the game screen), set the game display list
and continue on with the game.

RAPTOR can support up to 16 Lists, numbered 0-15.

RAPTOR Engine manual

Page 110 of 126

EX-07 – Screen Output

Functions Introduced

• RAPTOR_setlist

RAPTOR Engine manual

Page 111 of 126

EX-08 – Interlude (Some Game Stuff)

This chapter will not introduce any new RAPTOR functions but will instead add some
extra code to the game so that when the player dies the game returns to the title
screen.

This is to allow us to demonstrate the MemoryTrack and Highscore routines in the
next chapter.

Firstly, we modify the title screen code so that there is a label we can jump to which
will display the screen:

Next we will modify the main loop. Up to now, the loop has executed to infinity. We
will now add a conditional loop such that it only repeats if the ‘game_over’ flag isn’t
set:

And finally, in the Check_Collisions routine we will add some code to set this flag if
the player is hit. We will also play the sample for the explosion.

Now we have a version where you start on the title screen, and can play the game until
you die, at which point you will return to the title screen.

RAPTOR Engine manual

Page 112 of 126

EX-09a – High Scores

RAPTOR has its own internal high score management system. It is capable of
managing a top 10 score list, stored as a 32-bit integer, and an 8 character ASCII name
for each entry.

We will add the code to manage the high scores to the start of the title screen code, as
below:

To check if a score is in the top 10, load that score into D0 and call the function
RAPTOR_chk_highscores. This will return a result in D0. If D0 is negative the score
did not equal or beat any score in the high score table and nothing further needs to be
done.

If, however, D0 is positive the scoreboard will need to be updated. The reason this is
not done automatically with the single function is that you might want to test the
score, and if it is a new entry you might want to ask the player to enter their name
before sorting the table.

If you wish to submit a name to the function as well as a score then A0 must be loaded
with a pointer to an 8 character string. In this example we are just storing the score,
so nothing is loaded into A0 before calling the update function,
RAPTOR_resort_score_table.

We then convert the new high score to ASCII ready for display and continue.

RAPTOR Engine manual

Page 113 of 126

Functions Introduced

• RAPTOR_chk_highscores

• RAPTOR_resort_score_table

RAPTOR Engine manual

Page 114 of 126

EX-09b - MemoryTrack

During the RAPTOR_HWinit function RAPTOR will check for the presence of a
MemoryTrack device.

If one is detected it will attempt to load previously saved data from the Application
and Filename specified in _RAPINIT.S, in our example as below:

This means that the application only has to take care of saving the data, and can
assume any previously saved data is loaded at runtime.

To save the high score to MemoryTrack we will modify the routine we added for the
high score as below:

Before we call RAPTOR_mt_save we test if the MemoryTrack was present by checking
the raptor_mt_present variable, if it wasn’t then we skip over the save function.

RAPTOR Engine manual

Page 115 of 126

Functions Introduced

• RAPTOR_mt_save

RAPTOR Engine manual

Page 116 of 126

EX-10 – Tile Maps

The example game does not use Tile Maps, so this is a completely different example to
the previous ones.

We will have new _RAPAPP.S and _RAPINIT.S files, and will also introduce RAPTOR
List Branch Objects.

First, we must set the equates at the top of _RAPAPP.S to specify the parameters of the
tile map to be used:

Let’s break these down in detail:

raptor_first_map_object 0 This is the RAPTOR List Object ID for the
first object in the tilemap

raptor_map_tiles_per_y 8 How many tiles to render on screen
vertically

raptor_map_tiles_per_x 11 How many tiles to render on screen
horizontally

raptor_map_height 659 The height of the map in tiles

raptor_map_width 14 The width of the map in tiles

raptor_tilesize_x 32 The pixel width of a single tile

raptor_tilesize_y 32 The pixel height of a single tile

raptor_tilelinesz Calculated Tile image offset in bytes

raptor_tilesize Calculated Size in bytes of a single tile

RAPTOR Engine manual

Page 117 of 126

We also need to set the pointer to the tile bitmap data before calling
RAPTOR_HWinit.

The tiles for the tile map are restricted to 16 colour, 4bpp, and are stored in Windows
BMP format, which means we need to convert them into Jaguar bitmap format and
also move the palette into the correct CLUT.

The RAPTOR objects for the tile map must then be initialized by calling
RAPTOR_init_map_objs.

All that is left to do now to complete the setup in _RAPAPP.S is to include the tile
bitmap data and the map index values:

The tiles are stored vertically, with tile index 0 at the top. The index data is stored as a
string of words, with one word representing the index offset into the bitmap data for
that tile.

The remaining setup is completed in the _RAPINIT.S file.

RAPTOR Engine manual

Page 118 of 126

The List for a tile map must conform to the following structure:

We will create raptor_map_tiles_per_y number of copies of the above, defining one for
each required row in the display, which is achieved using the .rept and .endr
assembler directives.

In order to optimise the tile map for speed, branch objects are used to skip over the
list objects for rows that do not need to be displayed. These branch objects are
dynamically updated by the GPU when the RAPTOR_map_set_position function is
called.

RAPTOR Engine manual

Page 119 of 126

Each horizontal row of tiles to be displayed will be padded with two branches at the
start, and a branch at the end. The first branch will skip over the row if the current Y
position is less than the line the tiles need to be displayed on. The second branch will
skip over the row if the gap between the first and the second is more than the pixel
height of the tiles.

The final branch at the end will skip to the end of the map objects as we will know no
other tiles need to be checked if the current line was displayed.

The format of a List Branch Object is as below:

-3 Denotes that this is a Branch Object

BR_(type) Where (type) is less, more or always

Y comparator Y value to use as a comparison for the previous less or
more types

Number of objects to skip Number of objects to skip if branch is taken

Padding Padding to make a Branch Object the same size as a
normal object

Note: RAPTOR tile maps can be 8,16,32 or 64 pixels wide. Any size below 32x32 will
need a smaller display window as the number of used obejcts significantly increases.

In order to set the map co-ordinates we need to use the RAPTOR_map_set_position
function:

The raptor_map_position_x and raptor_map_positoin_y values are 16.16 pixel offsets
(not tile offsets) from the top left of the map.

RAPTOR Engine manual

Page 120 of 126

Also in the EX-10 folder is a subfolder called MAPPY.

Mappy is a tile map editing package that can be downloaded from:

http://tilemap.co.uk/index.html

The map for Project One (Reboot’s first release) has been provided in mappy format,
along with a general purpose LUA script that will export the index data from any
mappy map file in RAPTOR Index format, ready for including in a RAPTOR project.

Please note that the example uses a version of the Project One map that has been
converted to 16 colours. The original map from the game uses 256 colours.

RAPTOR Engine manual

Page 121 of 126

EX-10 – Tile Maps

Functions Introduced

• RAPTOR_init_map_objs

• RAPTOR_map_set_position

RAPTOR Engine manual

Page 122 of 126

RAPTOR Example Games

The following games were all written with various versions of RAPTOR Engine:

Degz:
http://reboot.atari.org/new-reboot/degz.html

Expressway:
http://reboot.atari.org/new-reboot/expressway.html

RAPTOR Engine manual

Page 123 of 126

Full Circle: Rocketeer:
http://reboot.atari.org/new-reboot/rocketeer.html

HMS Raptor:
http://reboot.atari.org/new-reboot/hmsr.html

RAPTOR Engine manual

Page 124 of 126

Kobayashi Maru:
http://reboot.atari.org/new-reboot/kobayashi.html

Rocks Off!:
http://reboot.atari.org/new-reboot/rocksoff.html

RAPTOR Engine manual

Page 125 of 126

Rebooteroids:
http://reboot.atari.org/new-reboot/rebooteroids.html

II:
http://rgcd.bigcartel.com/product/jagware-collection-1-0-atari-jaguar-cd

RAPTOR Engine manual

Page 126 of 126

Changes and Updates

• Typo: obejct change to object in all _RAPAPP.S files

• Comments in RAPTOR_print in all _RAPAPP.S files corrected

• L7ZZ replaced with LZ77 on page 46 of the manual

• raptor_liststart exposed – holds the base address of current list

• RAPTOR_particle_trigtable exposed – start of the internal angle table

